                                  METRIC SPACE
    Let X is set of points and on X is defined real valued, nonnegative, two variable function, 
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    If this function is satisfying following conditions then tuple (X, 
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) is called metric space.

1. 
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(x,y) = 0  (   x = y

2. 
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Examples: 

1) The simplest metric space is a discrete metric space which expression following form
                
[image: image10.wmf]î

í

ì

¹

=

=

r

y

     x

1,

y

     x

0,

y)

(x,


1. and 2. conditions are easy to verifying. Let us check last condition

3.    
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2) Let us put metrics on real line as following form (R, 
[image: image12.wmf]r

). 
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(x,y) = | x –y |. This metric satisfies 1-3 conditions and it is called metric in real line.  
3) Let us identify metric on Rn. Rn has an element with n-real number coordinates.

                   Rn = { x: x = (x1, x2, x3, . . . , xn), xi Є R}    

      If we take metric   
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  then (Rn, 
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) is convert metric space.

1. 
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2. 
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To verify last condition we need Cauchy-Schwarz Inequality in Rn.
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We have to prove
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where

            x = (x1, x2, x3, . . . , xn)

            y = (y1, y2, y3, . . . , yn)

            z = (z1, z2, z3, . . . , zn) ,     xi, yi, zi  Є R
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Let  xi -zi = ai 

       zi- yi = bi               xi- yi = ai + bi. Then it is enough to prove.
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4) 
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 is collection of the point X which has infinite real coordinates.

      x = (x1, x2, x3, . . . , xn, . . .)  and  
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     As an example (3) we can pıt metric as following

           
[image: image26.wmf](3)

-

-

-

-

-

-

-

-

-

-

-

-

-

  

)

y

(x

y)

(x,

n

1

i

2

i

i

å

=

-

=

r


First we can identify (3) takes finite value. We know 
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Then by using last example we can say (
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, 
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) is metric space.

5) Set of continuous functions in the closed interval. [a,b], C[a,b]  is a metric space with the metrics   
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1. and 2. conditions are easy to prove. Let prove last condition.

   For every f(x), g(x), h(x) Є C[a,b]. We can write 
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6) On the set of continuous functions C[a,b]. We can put metric following way.
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Hint: 
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Minkowsky Inequality
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Hölder Inequality
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where the numbers p>1 and q>1 satisfy the condition 
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Open and Closed Set in Metric Space
       By the open sphere S(x0,r) is denoted collection of points X which satisfying 
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       By the closed sphere S(x0,r) is denoted collection of points X which satisfying 
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       Here x0 is called center and r is called radius of the sphere.
Definition:(Closure Points)  X is Closure point of the set M iff for any sphere with center X has at least one element from M.
Definition:(Limit Point)  X is limit point of the set M iff for any sphere with center X has at infinite number points from M.
Definition: (Isolated Point)  x Є M is called isolated point of the set M, iff for any sphere with center X has not point from M except itself.
       Closure point may be limit point or isolated point.

Set of closure point of the M is called closure of the M and defined by 
[image: image39.wmf]M
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Theorem: If 
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Let us prove 2.
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Let us prove 
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Assume converse: Let x Є 
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    X is not closure point 
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 It is inverse x Є 
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Definition:(Dence Subset) There are given two set 
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Definition: (Everywhere Dence) Let 
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. A is called everywhere dence if 
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Examples:
1) Set of rational numbers is dence in real line 
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2) Set of polynomials with rational coefficient is dence. Set of continuous function.    
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Remark: This example deduce from fames theorem that for any continuous function can be approximate by polynomials with rational coefficient.
Seperable Spaces: The spaces is called seperable if it has countable everywhere dence subset.

Examples:

1) R is seperable space.

2) C[a,b] is seperable.
Example 1:   En = {x: x = (x1, x2, x3, . . . , xn), xi Є R}
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Example 2:  Set of numbers X = (x1, x2, . . . xn) with rational coordinates is dence in 
Rn, 
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Example 3: Set of polynomials with rational coefficient is dence C[a,b].

Seperable Space
1) Set of rational number is countable dence in R. R is seperable space. R is seperable space.

2) Set of points x = (x1, x2, . . . xn), xi is rational number is countable dence subset for Rn , 
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Closed Set 

     Subset of the metric space is called closed if it coinside with its closure. İ.e, M is metric space, 
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Closed Ball in Metric Space
       S(a,r) = {x: 
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f Є C[a,b] with 
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Theorem: Intersection any number of closed set is closed and union of finite number set is closed.
Proof: Let 
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     Let us prove 
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If we take 
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It is contrary of x is limit of 
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Open Set in Metric Space
   Let M is metric space A is subset of M, 
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1) Simplest example of open set is open interval in real line (a,b).

      Take any x Є (a,b),   a < x < b denote 
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2) Open ball in metric space is open set. Let 
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       Let take any 
[image: image98.wmf]A

  

Î

"

y

 and take 
[image: image99.wmf]y)

ρ(x,

δ

r

-

=

.Then 
[image: image100.wmf]δ)

S(x,

r)

S(x,

Ì

.

Theorem: Intersection of finite number of open set is open and union of infinite number of open set is open.
    Why infinite intersection of open set is not open?
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, {0} is unique element and closed.

Complete Metric Space
   Completness real line is well-known. Let us give explanation Completness in metric space.

Definition 1: The sequences Xn is satisfying Cauchy criterian if 
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 which for each n,m > n0, we have |xn –xm| < 
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Definition 2: The sequence is called Cauchy Sequence (or fundamental sequence) if it is satisfying Cauchy Criterian.
        There is fames Cauchy Criterian for real line.

Theorem (For the real line): In the real line any sequence is fundamental (Cauchy Sequence) if and only if it is convergent.
Theorem: Any convergent sequence in  metric space is fundamental.
Proof: 
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Let apply for Xn, Xm to the triangle inequality


[image: image106.wmf]2

ε

ε

ε

X)

,

ρ(X

X)

,

ρ(X

)

X

,

ρ(X

m

n

n

m

=

+

<

+

£



[image: image107.wmf]}

{X

ε

)

X

,

ρ(X

,

n

m

n,

n

m

n

0

Þ

<

>

"

Þ

 is fundamental sequence.

Definition: If in metric space any fundamental sequence is convergent in this space then this metric space is called complete metric space.

Example 1: n-dimensional Euclidean space with its metrics is complete metric space.

Proof: Let {Xp} Є En, Xp = 
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 the real line sequence 
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 is convergent some x Є En which

X= (x1,x2, . . . , xn).

Example 2: Sequence of continuous function in closed interval [a,b] is complete.

Proof: Let {Xn(t)} is sequence of continuous function in [a,b] and {Xn(t)} is fundamental. Then by the definition we can write 
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sequence of the function {Xn(t)} is uniform convergent if we take 

m→ ∞, 
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Xm(t)→X(t). X(t) is continuous.
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C[a,b] is complete.

Definition: Let M is metric space 
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 distance between the point x Є M and set A is 
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Definition: The sequence of closed sphere S1[x1,r1], S2 [x2,r2], . . . , Sn[xn,rn], . . . is called nested (or decreasing) if  S1[x1,r1]
[image: image125.wmf]É

 S2 [x2,r2] . . . 
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Sn[xn,rn] 
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. . .
   Using this concept, we can prove Completness theorem.

Theorem (Nested Sphere Theorem): The metric space X is complete if and only if every sequence of closed nested sphere SA(xA,rn) which rn → 0, as n → ∞ has nonempty intersection.
Proof:
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 Assume X is complete metric space and  Sn[xn,rn] are nested, closed sphere.

Let take sequence of center of these sphere x1,x2, . . . , xn, . . . This sequence is fundamental; because 
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      Sn [xn,rn] = {x, 
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      Assume 
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. Obviousely Sn has all point of sequence except x1,x2, . . . , xn-1  
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Sn is closed X is limit if 
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 Assume any closed, nested sphere Sn[xn,rn] has nonempty intersection and take any fundamental sequence {xn}.We can choose sphere
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where n1 < n2 < n3 < . . . < nk < . . .
     We can choose closed sphere center Xn with radius 
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      Then this sphere has nonempty intersection 
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Contraction Mapping
     Let A is a mapping defined on metric space (x,
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).The point x
[image: image150.wmf]X

Î

 is called fixed for A if X=A X mapping A is called contraction if there is 0 < α  < 1 which we have 
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     All this case we assume mapping A defined metric space X to itself A:X
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  Theorem (Fixed Point): The contraction mapping A defined complete metric space X to itself has unique fixed point X; AX=X.
   Proof: Let take any x0 
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 and define X1=AX0, X2= AX1, ... , Xn= AXn-1  . . . 
Then we can build new sequence x0, x1, . . . , xn, . . .  this sequence is fundamental. In fact, if we take 
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      It mean that this sequence is fundamental. Then by conditional the theorem it is convergent (Because metric space is complete)

      Let us show this limit of the sequence is fixed point for the mapping A.
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  AX = A lim xn = lim Axn = lim 
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here we used continuous of the continuous mapping 
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AXn → AX.  

      We show that existence fixed point for the mapping A. Let us prove uniqueness.Assume there are two fixed points,

       Assume there are two fixed points,

            Ax = x

            Ay = y
Then 
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Application of the Contraction Mapping
1) Let f(x) is defined [a,b] to [a,b] and satisfying Lipschitz conditions with constant M
           |f(x)-f(y)| < M |x-y|
If M < 1 then by theorem x = f(x) has unique solution.

The limit of sequence x1=f(x0), x2=f(x1), . . . convergence to this solution.

2) Theorem (Piccard)
      Let f(x,y) is continuous some region G which contains point (x0,y0) and satisfying Lipschitz condition with constant M respect y. f(x,y1)- f(x,y2) < M |y1- y2 |.Then there exist 
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Proof (Piccard): We can reduce different equation (1) with its initial condition to the integral form as follow 
     
[image: image170.wmf]ò

+

=

x

x

0

0

y)dy

f(x,

y

y


      It means that we can think some mapping 
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     Define G* the collect of continuous function 
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      Take metrics on G* as 
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We have to find 
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 which mapping to be contraction. Let 
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means that if 
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 then differential equation (1) has unique solution.
Solution of Fredholm Integral Equation          
     The Fredholm Integral Equation is 
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 is parameter.

     f(x) is unknown function 
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     We can also contradiction mapping for the integral equation (1) by using relations.
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If f(y) is continuous [c,d] then we can build metrics by using 
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      We build mapping from C[a,b]. This metric space is complete. Then we can use contraction mapping theorem
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For last relation to be contract mapping it must be 
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Problem 1) Let A be a mapping of metric space R into itself. Prove that the condition
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is insufficient for the existence of a fixed point of A.
Solution: Equivalence it means that fixed point theorem is not hold if contraction mapping 
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                     Topological Space
Definition: Let X is some set and collection of subset of X be 
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 . If  
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  is satisfying following conditions.
1) 
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2) infinite union and finite intersection in 
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Then it is said in X is given topology and it is denoted by 
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 is called open set. Definition of closure point, limit point, isolated point and neighbourhood of the point X can be give in topology space.
   Let 
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 X is called closure point of M if any open set 
[image: image228.wmf]T

G

Ì

 contains X has nonempty intersect with M. (except x)
    Limit point, isolated point can be given as same way.

Example 1)  Metric space is special case of Topological space.

Solution:  First axiom is Obviousely.

Second axiom can be obtain by using theorem in metric space about open sets.     
Example 2)  Consider set with two elements {a,b}.Then we can give topology on this set as follows T ={{a,b},{a},{b},
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Weak Topology 
Definition: Let T1, T2 are given two topologies on same set X. We will said T1 is weaker topology then T2 if 
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.
Theorem: Intersection of topology is also topology. If T1 T2 T3 . . . Tn  are topologies then 
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Proof: If 
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  If infinite union and finite intersection belongs any Ti 
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Base in Topological Space

     Let it is given Topological space 
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 collection of elements from T, 
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 is called base of the Topological space T if any subset M of X, can be shown as union of some elements of 
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Remark: In metric space we first gave open ball and extended this to open set. Then we can say base in metric space is union of open ball. Because any element in metric space can be shown as open ball.
Theorem : (Necessary and Sufficient Condition for Base)

    Let {
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Proof: (
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 Topological space.
      In the topological space it is interesting to take no more countable base from the base of this topological space.

Example: In metric space from the base we can choose countable base. In fact base in metric space one collection of open ball. If we choose balls with rational radius then collection of such balls is base in metric space.

Theorem: (Countable every where base)
     Let 
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Remark: If topological space T has countable base, then it is said T satisfies second axiom countability.

Proof: Let 
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G is open set, then can be shown as union of some set of
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 is a base).It means G has some element from M. It is contradiction. 
    In metric space, this theorem hold also inverse direction.

Theorem: If metric space X has countable everywhere dense subset, then this metric space has countable base.(X satisfies second axiom of Countability)
Proof: Let 
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) These open sphere can be take as countable base.

Corollary: (Necessary and Sufficient Condition)

     Confine let do theorems, we can say that metric space has countable base iff it is seperable.

Example 1) The sets real line, continuous function in [a,b] R, R1, Rn,
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 which we showed that has countable dense subset 
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 all these sets has countable base.
Example 2) The set of point with bounded coordinates are not seperable 
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 has not countable base.

Remark: Set which elements on the sphere or inside sphere is uncountable.

Proof: Let us take elements from M which has coordinate only zero and 1. We know that metrics in M is 
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 for such elements which coordinates only zero and one for to distinct coordinate metric will be 1.
   Let set all sphere center at this coordinate and radius 
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.This sphere has not intersection. This sphere is uncountable. If some set M is everywhere dense then for any sphere has element from M. This means M is not countable 
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M is not seperable. 

Countable neighbourhood base (First Axiom of Countability)
       In metric space X any point 
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 has countable neighbourhood base. For any 
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       All the metric space has countable neighbourhood base. But in the topological space it may not hold.

Definition: If topological space has countable neighbourhood base then it is said that this space has first axiom of countability.
Definition: The collection of the set {
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} is called cover of the topological space T, of 
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     If  
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 is open then {
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     If 
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 is closed then {
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} is closed cover of T. 
Theorem: (To choose finite or countable subcover in topological space)
     If topological space T has countable base, then any open cover of T, can be choose finite are countable subcover.

Proof: Let 
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 EMBED Equation.3 [image: image300.wmf]a
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).Then by using necessary and sufficient condition for the countable base in topological space T, we can choose countable base {K}. Then again by using this theorem for open 
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Convergent Sequences in Topological Space
     In metric space 
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 is subset and X is closure point for M, then there exist convergent sequence 
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.But in topological space it may not satisfy.Of course, if T is topological space, 
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 is subset X is closure for M, 
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For this, we need other assumption on the topological space .

Theorem: If topological space T satisfies first axiom of countability then for any closure point of the subset 
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Proof: Let O is neighbourhood base at the point x. Then we can countable 
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. Take any point xn of M which contains On. We can always choose this because x is closure of M then 
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Axiom of Seperation
      Now that most of properties of the metric space easily can be carry to the topological space. But there are some properties in topological space is not hold in metric space. For this topological space is the general concept of the analysis. 
Definition: If in topological space T for any two distinct point 
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 there exist neighbourhood Ox and Oy with 
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 then it is said that T is satisfies first axiom of Seperation or it is T1 space.

Example: Let T is space, take any subset T of T then (T, T) will be topological space. It is also T1 space. (It is easy to check this).But if T has two elements T = {a,b} and we topology as set T itself empty set and set {b}. T = {{a,b},
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,{b}} then (T, T) is topological space but is not T1 space. In fact if we take point a and b, then we have {a,b} which contains and {b}. 

Theorem: Every finite subset of T1 space is closed.

Proof: Let {x} has singletion. Then for 
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. It means [x] = x, we can extend this for the set which has finite number of elements.

Remark: Let us give strong from of the definition of T1.

Definition: If in topological space T any two distinct points x and y, has two neighbourhood Ox and Oy which,
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, then T is called T2 space or Hausdorff Space.

Example: Any T2 space is T1 space but is not hold conversely.

Definition: T1 space is called normal if any closed set F1,F2 in T there are open set O1 containing F1 and open set O2 containing F2 which 
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Example:1) Any normal space is T2 (Hausdorff) space. It is easy to check it.

Example: 2) Hausdorff space (T2) may not to be normal space.

     Let take closed interval [0,1] and take any open neighbourhood of the point 
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If we take set {0} and set which has element 
[image: image330.wmf] 

,...}

n

1

,...

3

1

,

2

1

{1,

 these sets are closed. But has without disjoint neighbourhoods. It means that this space is not normal.

Theorem: (Normality of the metric space)
      Metric space is normal.
Homomorph Topological Space 
      Let there are given two topological space X and Y and mapping between then 
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. If this mapping f is one-to-one and f, f-1 are continuous, then X and Y called Homomorph space.
      Homomorph space has same characters.

Continuity Topological Space
       Let X and Y two topological space and f is mapping between them. It is said f is continuous at the point 
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containing y0=f(x0), there exist open set E containing x0, which f(E)
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       If f is continuous any point of X, then it is said that f is continuous on X.
Theorem: (Necessary and Sufficient Condition for Continuity)
    The mapping 
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is continuous in X iff the pre image f-1(G) for any open set 
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Proof: Let f be continuous mapping from X to Y take any open set 
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and consider f-1(G) f is continuous means for any 
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Compactness in Topological Space
       In real line we know Heine-Borel theorem as follow any open cover of the closed interval [a,b] has a finite subcover. Let us give definition of the compactness in topological space. 
Definition: Topological space T is called compact if any cover of T has finite subcover. Hausdorff (T2) space is called compactum.

Definition: The sequence of subset 
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Theorem:(Necessary and Sufficient Condition of the Compactness of the topogical space)

      The topological space T is compact iff any centered closed sequence subset 
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 of T has nonempty intersection.
Theorem: If f is continuous mapping between two topological spaces X and Y, and X is compact then y so is.

Proof: We have to prove that any cover of Y has finite subcover.

    Let {
[image: image346.wmf]a

G

}  is open cover of Y. Then by Continuity of f pre image 
[image: image347.wmf])}

(G

{f

α

-

 is also open and cover of X. X is compact then by definition of compactness we can take finite subcover i.e, 
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 is also cover of Y and finite. It means that Y is compact.
Theorem 7: If T is compact topological space then any infinite subset of T has at least ne limit point.
Proof: Let X is infinite subset of T and has not limit point. Then there is countable subset of T. 
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.These sets are centered, closed and empty intersection 
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Theorem: Closed subset of the compact topological space is compact.

Definition (Countable Compact): Topological space T is said countable compact if any infinite subset of T has at least one limit point.
   It is clear that if topological space is compact then it is countable compact but inverse is not hold. But we can write a condition which countable compactness reduce to compactness.

Theorem: (Necessary and Sufficient for Countable Compactness)

    Each following two conditional one necessary and sufficient topological space T to be countable compact.

1) Every countable open cover of T has finite subcover.

2) Every countable centred system of closed subset of T has nonempty intersection.

Theorem: The concepts compactness and countable compactness coincide for a topological space T with a countable base. 

Relatively Compact Topological Space
    In topological space it is interesting to think about subset is closed.
Definition: The subset M of the topological space T is called relatively compact if 
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 is compact in T. If we use theorem.(closed subset of the compact topological space is compact) We can say any closed subset of the topological space is relatively compact.
Compactness in Metric Space

    Since metric space are topological space with special kind, definitions and results in preceding section apply to metric as well. But compactness concepts in metric space related with total bounded.
Definition 
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Definition (Total Boundness): 
    The subset 
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is total bound if for 
[image: image364.wmf]0

ε

>

"

 it has finite 
[image: image365.wmf]_net

e

. From this definition, it is clear that total bound set M is bound. Because M is union of finite bounded set.

Example: In Euclidean Rn space Boundness is equivalent to total boundness. Indeed, let M is bounded 
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 is positive number then it is setting in some cube, Q. Let us divided cube by small cubes with side 
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Remark: If subset M is bound then it may not total bound. Let us take 
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Example: Let us consider Hilbert cube in 
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Theorem: Every countable compact metric space is total bound.

Proof: Assume conversion i.e R is                                    . Then it mean that there exist 
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 which R has not 
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[image: image393.wmf]R

Î

 which 
[image: image394.wmf]ε

)

a

,

ρ(a

3

1

>

 
[image: image395.wmf]ε

)

a

,

ρ(a

3

2

>

.Otherwise a1 and a2 is 
[image: image396.wmf]_net

e

of R. Of course, we choosed  a1, a2,..., ak  and there exist 
[image: image397.wmf]R

a

1

n

Ì

+

 which 
[image: image398.wmf]ε

)

a

,

ρ(a

1

k

1

>

+

, 
[image: image399.wmf]ε

)

a

,

ρ(a

1

k

2

>

+

, ...,  
[image: image400.wmf]ε

)

a

,

ρ(a

1

k

k

>

+

. Then we build sequence a1, a2,..., an, ... which  has not limit point then infinite subset {a1, a2,..., ak, ...} of R is not countably,compact.
Theorem: Every countable compact metric space has countable everywhere dence subset and countable base.

      From this theorem we can say following corollary.
Corollary: Every countable metric space is compact 

1) Countably compact metric space has countable base

2) Compact and countably compact equivalent in T space has countable base.

     We shown that boundness is necessary condition for compact metric space. But inverse is not true. For example, let take set of rational numbers in closed interval [0,1] with distance metris. This set is total bound. Let take sequence of rational number 0, 0.4, 0.41, 0.414, 0.4142, ... this sequence is convergent to irrational number 
[image: image401.wmf]1

2

-

.But this has not limit point in rational number.(decimal approximation)

     It means that this set is not countable compact.

     Let us give necessary & sufficient condition for compactness, of the metric space.

Theorem: (Necessary & Sufficient Condition for Compactness)
     A metric space R is compact iff it is total bound and complete.
     Its interested to learn compactness on set of continuous function which defined on closed interval [a,b]. For this we have to give some definition.

Definition (Uniformly Bounded of the set of function):
    The set of 
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 of the functions 
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Definition: (Equicontinuous of set of functions)
      The set 
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 of the functions 
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 defined on [a,b] is said to be equicontinuous if any given 
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Theorem: (Arzela)

      Set of continuous functions defined on [a,b] is compact iff uniformly bound and equicontinuous.

 Theorem: (Peano) 

       Let function f(t,y) is continuous on plane domain G in differential equation
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Real Valued Function on Metric and Topological Space
      Let T to be topological space and f is function defined on T.We can put special case of topological space, metric space R and collection of the function defined on R.

      Simple definition of the functional is mapping defined on such collection of functions.

Example: Let X(t) be continuous function defined on [0,1]. 
[image: image417.wmf])

,...S

S

,

(S

n

1

0

j

 is a n+1 real variable function, 
[image: image418.wmf]u)

ψ(t,

 is defined on two real variable then following mapping are functional.
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 All these relations are functionals. F1, F2, F3, F4, F5 are continuous functionals.
 F1 is continuous, because
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      F6 is not continuous function. Let us prove this. Let take any differentiable X(t) with 
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. Then F6 is not continuous.                                     

    Show that F6 is continuous function on the C.But we can show F6 is continuous C’ (set of function which its and first derivative are continuous) which the metrics
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Example: F7 is discontinuous functional in fact let take X0(t) = 0, Xn(t) = 
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But we can shown that.
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Definition: Let real valued function defined on metric space R. It is said f(x) to be uniform continuous on R. If 
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    We know that function defined on real line and continuous on closed and bounded set then this function is uniform continuous. We can generalized this also in metric space.
Theorem: The continuous function defined on compact metric space R is uniform continuous.
Proof: Let f(x) is continuous but is not uniform continuous. Then 
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  R is compact then 
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    We know that f(x) is continuous then one of (2) is not hold it means that f(x) is uniform continuous.

     There are other properties of the continuous function which defined on compact set. Then let introduce:

Theorem: The continuous function defined on compact metric space (topological space) R is bounded. Moreover it takes upper bowd and lower bounded value.

Proof: Let f defined a compact topalagical space T and takes real valued. By using theorem we can say mapping T by f is compact R1. Then image of f in R1 is closed and bounded then f(x) takes supremum and infimum. 

Definition:(Cluster Point) The number 
[image: image453.wmf]l

 is called cluster point of the sequence {xn} if 
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. The sequence {xn} maybe has cluster points bu not limit point.

Example: xn = (-1)n
 lim x2n = 1

 lim x2n+1 = -1

    xn has two cluster point 1, -1 but has no limit point if there are cluster point if there are cluster points and equal each other then it is limit point.

Definition : (Upper Semi Continuity)  The function f(x) is said to be upper semi continuous at x0 if given any 
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, there exist neighbourhood of x0, which 
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Definition : (Lower Semi Continuity)  The function f(x) is said to be lower semi continuous at x0 if given any 
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   If function lower and upper semi-continuous at a point x0 then this function is continuous at x0.

         If function continuous then lower and upper semi-continuous but inverse is not correct. It means that semi-continuous function covers larger class of the function that the continuous function.

Example 1) Integral part of x, i.e [x] f(x) = [x].
    f(x) = [x] is upper semi-continuous but is not continuous.

Example 2)  
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  is lower semi-continuous.

Example 3) 
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 is upper semi-continuous.

Theorem: Lower semi-continuous function defined on compact metric space bounded from below takes it is upper bound value.

Proof: Let assume contrary, i.e, inf f(x) = 
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 has finite number of element from E. Because f(x) =
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. Then x0 is not limit point. It is contradiction, i.e, f(x) is bounded below.
Definition: (Limit Superior) The number 
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 is said to be limit Superior of f(x) at x0.

Definition: (Limit Interior) The number 
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    Difference 
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    For the sequence {xn} the limit superior is defined by 
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                    CHAPTER 4         

                 LINEAR SPACE

Definition: The set L of the elements x,y,z,w,... are called linear space, if it satisfies following three identity:
1) For any two elements x,y of the set L corresponding element x + y 
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 L which satisfies

  x + y = y + x

 (x+y)+z = x + (y + z) (asso.)

There exist element 
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is called zero element with the property that x + 0 = x

    For any element x of L, there exist – x is called negative of x, with the property x + (-x) = 0

2) For any element of L and real numbers 
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3) Distributive Law
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Note 1: Linear space obeys two operation, addition of elements and scalar multiples.

Note 2: If scalar multiples is real numbers then L is called real linear space it complex numbers then L is complex linear space. 

Example 1: The real line is a simple example with usual operation of sum of real numbers and scalar multiplication.
Example 2: Set of n-tuple ordered numbers x = ( x1, x2, ... , xn) and y = ( y1, y2, ... , yn) are linear space with operation of sum of elements x + y = ( x1+y1, x2+y2, ... , xn+yn) and multiplication of numbers 
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.This space is called n-space and denoted by Rn. If numbers are complex then it is called complex linear space and denoted by Cn.
Example 3: Set of ordered infinite sequence of numbers x= ( x1, x2, ... , xn) with the property 
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can be shown by using following simple inequality 
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X= ( x1, x2, ... , xn), y = ( y1, y2, ... , yn).Then x + y = ( x1+y1, x2+y2, ... , xn+yn) and 
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    Let again see the set of ordered sequence of infinite numbers x= ( x1, x2, ... , xn, ...)          (1)
If this sequence convergent 
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, it defined the Complex space, if sequence of (1) is convergent to zero 
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 Then it defined C0 space, if (1) is bounded 
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, the it defined by M, if it divergence then it defined by Rn. All these space are linear space.

    If we talk about the linear space then first the think about operation of sum of elements and multiplication of elements by numbers. Then we can define isomorphism between linear space.

Definition: Two linear space L and L* is called isomorphic if it preserves operation of addition of elements and multiplication by scalar: 
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Definition: Elements x1, x2, . . . , xn of the linear space L are called dependent if there exist numbers 
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       Converse case is called independent of course if last relation hold only if  
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 then elements x1, x2, . . . , xn  are called independent.

Dimensional of the Linear Space 
    The linear space L is called n-dimensional then always it can be found n independent elements in L. But if we add one more element then it converge a linear dependent.

     Linear space is called infinite dimensional if any n elements of this space are independent for every n. 

Definition: (Subspace) Let L is linear space and L’ is subset of L. 
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 also satisfies operations of L then 
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Example: Let L is linear space fix any element 
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Definition: (Linear Functionals) The real valued function f which defined on linear space L is called linear functional if it satisfy following condition:
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Example 1: Let us define linear functional on n-space; Rn. Fix any element 
[image: image513.wmf]n

R

a

Î

, 

 a = (a1, a2, . . . , an ) and define functional as following

               
[image: image514.wmf]å

=

=

n

1

k

k

k

x

a

f(x)

 , x = (x1, x2, . . . , xn)


[image: image515.wmf]n

R

y

x,

Î

 


[image: image516.wmf]å

=

b

+

a

=

b

+

a

n

1

k

k

k

k

y

x

a

y

x

f

)

(

)

(

 
                            
[image: image517.wmf]å

å

=

=

+

=

n

1

k

k

n

1

k

k

k

k

y

a

β

x

a

α


                   
[image: image518.wmf])

βf(y

)

αf(x

k

k

+

=


Example 2: Let us define on C[a,b] linear functional as follow
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Definition:(Null Space) Let L is linear space and f is linear functional defined on it. Then it defines space as follows 
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. Lf is subspace of the space L and is called null space. 

       There is following interesting theorem between linear space and null space. L – Lf is linear space.

Theorem: Let x0 is fixed as 
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Proof: Clearly 
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     Then take any element 
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      We proved existence representation, i.e, existence y and 
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Definition: (Convex Set) The set M is called Convex if for any 
[image: image548.wmf]M

y

x,

Î

 the expressions 
[image: image549.wmf]M

βy

αx

Î

+

, where 
[image: image550.wmf]0

β

α,

³

 and 
[image: image551.wmf]1

β

α

=

+

.
    The set of all points which 
[image: image552.wmf]0

β

α,

  

βy,

αx

³

+

, 
[image: image553.wmf]1

β

α

=

+

is called segment connecting between point x and y.

Definition: (Interior of the Convex Set) Let E is convex set M is called interior of the E, if we take 
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Convex set is called a convex body if it has nonempty interior.
Example: Let C[a,b] and take of the subset M of C[a,b] which 
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     Let take 
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Example: Let take 
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 space and take subset M of  
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 x = (x1, x2, . . . , xn) M is convex set.

Definition: (Convex Functionals): Let L to be linear space and f(x) is functional defined on it. The functional f(x) is convex functional, if 
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Note: Unlike in the case of linear function, we don’t assume convex functional take finite value, the case of  
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Example: The length of the vector Euclidean n-space is convex functional. 

        Let us prove this in Euclidean n-space length of the vector x = (x1, x2, . . . , xn)  is 
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        Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) then
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Example: We can define convex functional on the m-space, i.e,the set of all points                                  which xi ; i = 1, 2, . . .    is convergent. Let define functional on M as follow 
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Minkowski Function                 
In this last chapter we will give connection between convex set and convex function.

Theorem: Let p is a convex functional defined on linear space and k is a positive number. Then the set 
[image: image587.wmf]k}

p(x)

L;

{x

E

£

Î

=

 is convex set. If p is also finite then E is body with interior 
[image: image588.wmf]k}

p(x)

L;

{x

I(E)

<

Î

=

 there 
[image: image589.wmf]I(E)

0

Î
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Note: The meaning of this theorem such that any convex functional define convex set.

     Inverse of this theorem is also hold.

Let E is convex body which contains zero element then following functional is called Minkowski functional.

Theorem(Minkowski):The Minkowski functional is finite and convex.
About the Hahn-Banach Theorem:   
        Let the space L to be linear space and 
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 is subspace f0(x) is linear functional defined on subspace L0.The linear functional f(x) which define whole space L and satisfying equality
             f0(x) = f(x) on L0          

is called extention of the linear f0(x) whole space L.

Note: In many problems of the convex analysis in countered is that extension of the function, origional defined on subspace, to the more general space. 
Theorem: (Hahn-Banach) Let p is infinite convex functional defined on linear space L and f0(x) is a linear functional defined on subspace 
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  (4), 
[image: image593.wmf]0

L

x

Î

.Then there extension of the functional f(x) which defined whole space L satisfying inequality (4) on it.
                     Euclidean Space (Inner Product Space)   
      By a scalar product in the real linear space R we meant the function of the two pairs 
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Definition: (Euclidean Space) The real linear space equipped with the scalar product is called Euclidean or iner product space. 

Theorem: (Schwartz- Inequality) For any two elements from Euclidean space the following Schwartz- Inequality is hold.
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Proof: The case, when x and y are zero element is obviously. Then, we assume that 
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     If we take some calculation on 
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 We know that 
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Theorem: The Euclidean space R becomes normed space if we define norm, 
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   Proof: First & second properties of the Euclidean space. Let consequence of the definition of Euclidean space. Let us prove triangle by using Schwartz-Inequality    
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If we take two elements from the Euclidean space R, it follows that
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   If we consider first and last part of the expression, then we get
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   For any two vectors of the Euclidean space, 
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     If (x,y) = 0, then from (1) 
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Definition: The set of vectors 
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The Ortonormal system 
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 is called ortonormal base if it is complete set.
Example: Let take real n-space Rn. If we take any two element 
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        x = (x1, x2, . . . , xn) , y = (y1, y2, . . . , yn)  and define scalar product as follows.
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        en = (0,0,0,0,...,1)

Example: The set of continuous function in [a,b], i.e, C[a,b] with the scalar product 
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     If we take 
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   The most important notion is seperable Euclidean space.i.e, Euclidean space on seperable space Rn,
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Theorem: Seperable Euclidean space has no more then countable elements.

Proof: Let 
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If we take any 
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Theorem of Orthogonalization
   In preceding section, we show that in the Euclidean Rn space. There exist ortogonal vectors. In this section we will generalize this opinion to the infinite dimensional Euclidean Space.

Theorem: Let f1,f2, . . . , fn, . . . are linear independent elements in Euclidean space R. Then there exist vectors 
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2) Any vectors 
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3) Every vectors fn is a linear combination.
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     These orthogonalization process is unique within factor of 
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Theorem: Every seperable Euclidean space has countable orthonormal base.

Proof: We can choose countable elements f1,f2, . . . , fn, . . . due to Euclidean space is seperable. Then we will try to find linear independent vectors between elements 

f1,f2, . . . , fn, . . . as follows: If 
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 is a linear combination of the elements f1,f2, . . . , fk, . . . then we eleminate vectors 
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Bessel Inequality Closed Orthogonal Systems:
    We show that in Rn there exist orthonormal base e1,e2, . . . , en, . . . for which any 
[image: image662.wmf]n

R

f

Î

, 
[image: image663.wmf]å

=

=

n

1

k

k

k

e

c

f

, where ck = (f, ek), k = 1,2, . . . , n

Let us generalize this opinion to the infinite dimensional Euclidean space R, and 
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(2) which is called Fourier Series of the element 
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    It is natural to ask question that the series (2) is convergent?_ if it is convergence, coinside with the vector f.Then we can think about the following theorem.

Theorem: Let 
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(Bessel Inequality).

Proof: Let us take 
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by the orthogonality of the system 
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If we pass limit as 
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 (6).The case of Bessel’s Inequality becomes equality is particulary interesting.
Definition: If inequality (6) becomes equality 
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Note: It is another meaning of the word, “closed”  is not confused with the word “closed” in preceding section.(Orthonormal system is closed.)
Theorem :(Necessary & Sufficient Condition for Closedness):  The orthonormal system 
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Riesz-Fischer Theorem
   In previous section we learn that for given orthonormal system 
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Theorem: (Riesz-Fischer) Let 
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                  Hilbert Space

Definition: The set H of elements x, y, z, . . . is called Hilbert space if

1) H is Euclidean space, i.e, H is linear space with scalar product.

2) H is complete with the metrics 
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3) H is seperable space, i.e H contains countable dence subset.

4) H is infinite dimensional, i.e for any n, H has n linear independent elements.
Theorem: 
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Proof: In fact, 
[image: image734.wmf]2

l

is infinite dimensional space. Let us prove 
[image: image735.wmf]2

l

 is seperable space take all the X which has finite numbers nonzero rational coordinates and denote D. Set of this vector is countable because coordinates. 
[image: image736.wmf]2

l

 is dense because let take any x = (
[image: image737.wmf],...

,...x

x

,

x

n

2

1

)
[image: image738.wmf]Î



 EMBED Equation.3  [image: image739.wmf]2

l

 and sequence xk = (
[image: image740.wmf],...

,...x

x

,

x

k

2

1

).We know xk
[image: image741.wmf]Î

D, 
[image: image742.wmf]k

"

. We know that 
[image: image743.wmf]x

x

lim

k

k

=

¥

®

.Then D is seperable.

Isomorphic Space
Definition: Two Euclidean space R and R* are called isomorphic, if there is one-to-one corresponding between theirs elements 
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Note: Any two finite dimensional Euclidean space is isomorphic and any finite dimensional Euclidean space is isomorphic to n-tuple space. But maybe infinite dimensional Euclidean spaces may not isomorphic. For example; let us take 
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 is complete C[a,b] is not.
Theorem: Any two Hilbert spaces are isomorphic.

Characterization of the Euclidean Space
Theorem: (Necessary and sufficient condition Normed Space)

    E to be Euclidean is for any two elements 
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An example; Let’s take 
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 For the p = 1, it is easy to check that 
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 For the p > 1, by using Minkowski Inequality  
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    We can prove 
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                        f = (1, 0, 0, . . . , 0) 
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     Let us prove parallelogram rule.
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Example: Let us take C[a,b], i.e, set of all continuous function in 
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        f(x) = sinx 
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        g(x) = cosx 
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Definition: The topological linear space is meant the set E with following properties.

1) E is linear space.

2) E is topological space.

3) The operation of addition of elements and multiply by scalar in E are continuous with topological in this space. It means that the following conditions hold;

a) If, z0 = x0 + y0, then for any neighbourhood. V of the z0, there exist neighbourhood u and w of x0 and y0, which  x + y 
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Theorem-1: Let U is neighbourhood of the zero in linear topological space. Then the set 

U + x0 = {z, z = x + x0, x
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Example: Let K[a,b] be at a set of infinitely times differentiable functions. Then let us define by N0 set of following space.
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Definition: (Bounded in linear space) The subset M of the linear space E is called bounded if for any neighbourhood U of the zero there exist constant 
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Definition: (Total Bounded) The subset M of the linear space E is called total bounded if it contains nonempty, open and bounded set.
For example; Any normed space is total bounded. In fact, if we take 
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                     CHAPTER 5

          Continuous Linear Functional

Definition: Functional F defined on linear topological space E is called a linear if 
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Theorem: If linear functional defined on linear topological space E is continuous some point 
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 then this functional is continuous on E.i.e, all points of E.

Proof: Let f(x) is continuous at 
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 V is neighbourhood of y.Let take any 
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Corollary: To check of Continuity of the linear functional in linear topological space is enough to check at only one point. i.e;for example at the zero.
Theorem: Necessary & sufficient for the linear functional in the topological space be continuous is bounded on some neighbourhood of zero.
Proof: (
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Theorem: Necessary & sufficient condition in the topological space to be continuous is f is bounded for any bounded set. This condition is sufficient if E satisfy first axiom countability.

Note: Linear functional is called bound if it bounded on any bounded subset.

Continuous Linear functional on Normed linear space
     We know that normed space first axiom countability then by using last theorem linear functional in normed space is continuous iff it is bounded. Then we can radius to following opinion f is bounded functional radius to f bounded on any bounded set means 
[image: image830.wmf]M

f(x)

<

, for any 
[image: image831.wmf]c

x

£

.By linearity we can say f bounded on unit sphere. Then we can think about 
[image: image832.wmf]f(x)

sup

f

1

x

£

=

   (1). If (1) is finite then 
[image: image833.wmf]f

 is called norm of the functional.
Theorem: Norm of the linear functional is normed space satisfies following to properties:


[image: image834.wmf]f

 

x

f(x)

,

x

f(x)

sup

f

0

x

£

=

¹

.

Proof: We know that 
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In last inequality
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